Blog post

Blog Article

Rethinking Targeting: Why Your Approach to Audience Targeting is All Wrong

By:
Matthew Kaplan
No items found.

Table of Contents

down chevronup chevron

October 6, 2022

When marketers (or their agencies) begin their campaign planning process the first step is to ask: who do we want to target?

To answer it, marketers look at their past campaigns to see who installed an app and who uses it most frequently, meaning who are their most high-value users? 

Media buyers often approach a campaign by identifying third-party datasets that map to specific aspects of the personals, e.g. moms who live on the West Coast. They also look for apps and channels that are endemic to their personas -- parenting apps for moms, for example. 

Given that most of these personas are highly nuanced (e.g. gender + age + attitude + life stage), media buyers will acquire multiple datasets as well as develop a complex channel strategy in order to execute against the various personas/cohorts/lookalikes.

The challenges to this approach are legion. To begin, third-party datasets are very problematic. How are these audiences created? Which data points are leveraged in order to label a particular user “budget conscious” or in market for a particular product? How often are those audience segments refreshed? 

A big challenge with this approach to targeting is inherently biased. The user base for a specific marketplace app may be predominantly women, but why is that the case? Is it because the app marketers have always targeted women? Who’s to say that men won’t install the app and make frequent purchases if targeted as part of a UA campaign?

Worst of all, preconceived ideas of who an audience is can’t help but diminish the marketer’s targeting pool, and ultimately, a brand’s ability to grow its customer base. Let’s say you have a marketplace app that specializes in household items sold in bulk. Market research and surveys that go back many years will tell you to target women. 

But what about men who live alone? They may prefer to buy paper towels in bulk, especially when they can do so quickly and from the convenience of an app. Does it make sense to eliminate fully 25% of the consumer base as a matter of course?

A better way to target: Leave it to the machines

Machine learning offers a wholly different paradigm for targeting than the traditional persona-based approach. It begins with a brand’s first-party data; rather than look for proxies that represent “ideal” prospects, it parses past campaign data for relationships between inputs (essentially user and channel characteristics)  and outputs (Did the user click an ad? Install an app? Use the app?).

In the best case scenarios, machine learning will look at a brand’s entire campaign log to understand those relationships and why a campaign performed as it did. This approach eliminates the bias that’s built into personas.

Granted, app installs that result from seeing an ad are far and few between, especially when one considers how many impressions were purchased for a campaign. As Dr. Sechan Oh, Moloco’s Director of Machine Learning, explained in a blog post, “when we’re looking for features of a conversion, we’re looking at a sparse dataset.”

But it’s an exercise that will deliver far better return on ad spend (ROAS). The benefit of relying on that relationship of inputs to output is that it opens up a greater pool of inventory to a campaign. Essentially, the entire web is available, making it possible to find high value users even if they never visit an endemic app or channel, or match one of the personas. 

This logic – use machine learning to find high-quality users, not pre-set audiences – goes against established marketing doctrine. Marketers can be uncomfortable with abandoning the persona-based approach to targeting. 

But the truth is, that approach was never truly effective in the digital world. And now that third-party data is going away and privacy restrictions are on the rise, it’s time for marketers to rethink the way they target and acquire their audiences.

Matthew Kaplan

Senior Content Marketing Manager

SEE MORE
Dark blue arrow to learn more about the subject
エディターのおすすめブログ
SKAdNetworkの業界ベンチマークとベストプラクティス:アトリビューション改善のための3つの実行可能な戦略SKAdNetworkの業界ベンチマークとベストプラクティス:アトリビューション改善のための3つの実行可能な戦略

SKANアトリビューションの改善、キャンペーンの最適化、iOS広告のパフォーマンス強化を実現する3つの実行可能な戦略を、最新のAppsFlyerとMolocoのウェビナーからご紹介します。

続きを読む
White arrow to learn more about the subject
ダブルエンドカードが広告主により多くの成長機会をもたらす理由ダブルエンドカードが広告主により多くの成長機会をもたらす理由

Molocoのダブルエンドカード機能によって2つ目のインタラクティブなタッチポイントを追加することで簡単にエンゲージメントを高め、広告主のビジネス成長を促進できる理由をご覧ください。

続きを読む
White arrow to learn more about the subject
スケーラブルなモバイルアプリの成長を可能にするリエンゲージメントの力スケーラブルなモバイルアプリの成長を可能にするリエンゲージメントの力

戦略的なリマーケティングアプローチとMolocoのリエンゲージメントソリューションによってユーザーの継続率を最大限に高めながら離脱を減らし、持続可能なアプリの成長を促進できる理由をご覧ください。

続きを読む
White arrow to learn more about the subject
モバイルアプリマーケティングの成功に向けて:リアルマネーゲームのマーケターが持続的成長を実現する3つの方法モバイルアプリマーケティングの成功に向けて:リアルマネーゲームのマーケターが持続的成長を実現する3つの方法

Global Gaming Expo(G2E)で行われた業界リーダー達によるセッションから、リアルマネーゲーム(RMG)のマーケターがオープンインターネットでのモバイル広告によって持続可能な成長を促進し、収益を最大化できる3つの重要な戦略についてご紹介します。

続きを読む
White arrow to learn more about the subject

さらに詳しく知りたい方はこちら

Molocoの新着情報

arrow top